Double-dissociation between the mechanism leading to impulsivity and inattention in Attention Deficit Hyperactivity Disorder: A resting-state functional connectivity study

Masafumi Sanefuji, Michael Craig, Valeria Parlatini, Mitul A. Mehta, Declan G. Murphy, Marco Catani, Leonardo Cerliani and Michel Thiebaut de Schotten

Article info

Article history:
Received 20 August 2015
Reviewed 29 November 2015
Revised 31 March 2016
Accepted 6 June 2016
Published online xxx

Keywords:
ADHD subtypes
Functional connectivity
Inter-individual variability
Fronto-parietal
Cortico-striatal

Abstract

Two core symptoms characterize Attention Deficit Hyperactivity Disorder (ADHD) subtypes: inattentiveness and hyperactivity–impulsivity. While previous brain imaging research investigated ADHD as if it was a homogenous condition, its two core symptoms may originate from different brain mechanisms. We, therefore, hypothesized that the functional connectivity of cortico-striatal and attentional networks would be different between ADHD subtypes. We studied 165 children (mean age 10.93 years; age range, 7–17 year old) diagnosed as having ADHD based on their revised Conner’s rating scale score and 170 typical developing individuals (mean age 11.46 years; age range, 7–17 year old) using resting state functional fMRI. Groups were matched for age, IQ and head motion during the MRI acquisition. We fractionated the ADHD group into predominantly inattentive, hyperactive–impulsive and combined subtypes based on their revised Conner’s rating scale score. We then analyzed differences in resting state functional connectivity of the cortico-striatal and attentional networks between these subtypes. We found a double dissociation of functional connectivity in the cortico-striatal and ventral...
Attentional networks, reflecting the subtypes of the ADHD participants. Particularly, the hyperactive–impulsive subtype was associated with increased connectivity in cortico-striatal network, whereas the inattentive subtype was associated with increased connectivity in the right ventral attention network. Our study demonstrated for the first time a right lateralized, double dissociation between specific networks associated with hyperactivity–impulsivity and inattentiveness in ADHD children, providing a biological basis for exploring symptom dimensions and revealing potential targets for more personalized treatments.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Attention Deficit Hyperactivity Disorder (ADHD) is a neurodevelopmental condition affecting approximately 8% of school-aged children (Bloom, Cohen, & Freeman, 2011) and 4% of adults (Kessler et al., 2006). Originally described in 1798 (Crichton, 1798; reprinted in Crichton, 2008) ADHD patients ‘incessantly withdrawn from one impression to another’ and ‘excites such a degree of anger as borders on insanity’ (for an historical review see Lange, Reichl, Lange, Tucha, & Tucha, 2010). These two core symptoms are interpreted as inattention and hyperactivity–impulsivity in the DSM5 (American Psychiatric Association, 2013) and can be of variable severity. Although these symptoms frequently come together, their expression can be unbalanced leading to the division of ADHD into three clinical subtypes: predominantly inattentive, predominantly hyperactive–impulsive, and combined (American Psychiatric Association, 1994). Whether the brain mechanism leading to these subtypes is different remains to be clarified in order to enhance personalized treatment.

The efficacy of current drug treatments is predominantly mediated by their effects on the dopaminergic, and/or noradrenergic systems. They are effective in many patients, but approximately 1/3 fail to respond – predominantly those with the ‘inattentive’ subtype (Hazzel et al., 2011; Spencer et al., 1995; Weiss et al., 2005). This finding suggests that in addition to being clinically heterogeneous (Barkey, Fischer, Smallish, & Fletcher, 2002; Biederman et al., 2006); ADHD subtypes may be modulated by different brain systems with a variable response to pharmacological treatments.

There is increasing evidence that ADHD is associated with abnormalities in specific brain regions; and particularly dorsal anterior midcingulate cortex (dMCC), prefrontal cortex, parietal cortex, striatum, and cerebellum (see Bush, 2011; Cortese et al., 2012 for review). The significance of these areas is that they are involved with attention, executive function, motor control, response inhibition, and working memory. However, rather than a mosaic of functionally specialized areas, the human mind is believed to emerge from the coordinated activity of distant but anatomically interconnected regions. Advances in brain imaging have enabled us to study anatomical and functional connectivity within these networks in vivo.

One of the most consistent findings from studies of anatomical connectivity, in children and adolescents with ADHD, is reduced fractional anisotropy (Hamilton et al., 2008; Konrad et al., 2010; Luders et al., 2009; Makris et al., 2008) of fronto-striatal tracts (within the cortico-striatal network) and fronto-parietal tracts (within the ventral and dorsal attention network). These findings have been supported by some (Cubillo, Halari, Smith, Taylor, & Rubia, 2012; Dickstein, Bannon, Castellanos, & Milham, 2006; Rubia, 2011) but not all studies of functional connectivity (Tian et al., 2006; Uddin et al., 2008).

Studies of functional connectivity have employed standard, task-activation, fMRI (task-fMRI), or resting-state fMRI (rs-fMRI). A key advantage of rs-fMRI is that participants are not required to focus on an explicit task. This is particularly beneficial in ADHD, where compliance and attention during scanning may be problematic, and confound interpretation of results. The underlying principle of rs-fMRI is that functional connectivity between brain regions can be successfully mapped by correlating spontaneous low-frequency (<1 Hz) fluctuations in blood oxygenation level dependent (BOLD) signal at rest (Fox & Raichle, 2007). Previous rs-fMRI studies of ADHD have reported both hypo- and hyper-activation of fronto-striatal, fronto-parietal and other networks (see Konrad et al., 2010 for review). Also, whole brain voxel-based analyses revealed decreased entropy (Sokunbi et al., 2013) and decreased amplitude of low-frequency fluctuation (An, Cao, Sui, et al., 2013; Zang et al., 2007) in the frontal and the occipital lobes. These inconsistencies are likely to be due to a combination of methodological factors, including the method of analysis employed, micro-movements (Fair et al., 2012), variability in the subtype diagnosis and the age range of subjects. The small size of clinical samples has also been a significant limitation of the majority of imaging studies of ADHD to date. An important consequence of this has been the scarcity of studies with the statistical power to analyse ADHD as a heterogeneous condition. Therefore there has been a need for larger studies with sufficient power to fractionate ADHD into its clinical subtypes.

In the present study we accessed a recent, unrestricted public release, dataset of rs-fMRI images from 255 children and adolescents with ADHD (ages: 7–21 years old). This has provided a valuable opportunity to analyse whether the

Please cite this article in press as: Sanefuji, M., et al., Double-dissociation between the mechanism leading to impulsivity and inattention in Attention Deficit Hyperactivity Disorder: A resting-state functional connectivity study, Cortex (2016), http://dx.doi.org/10.1016/j.cortex.2016.06.005

clinical heterogeneity observed in ADHD is underpinned by differences at a functional brain network level. We focused our analyses on three resting state networks of interest, the dopaminergic circuit (i.e., cortico-striatal circuit Alexander, DeLong, & Strick, 1986; Nieuwenhuys, Voogd, & van Huijzen, 2008) for its essential role in impulsivity (Buckholtz et al., 2010), and the dorsal and the ventral fronto-parietal networks (Fox, Corbetta, Snyder, Vincent, & Raichle, 2006) for their key role in attention (i.e., dorsal and ventral attention networks Corbetta & Shulman, 2002).

2. Material and methods

2.1. Dataset

We selected 165 children out of the 255 children cohort (44 girls, 121 boys; 7–17 year old, 10.93 ± 2.53 years, FSIQ > 70) with ADHD. Selection was based on the use of the same version of the Conners Parent Rating Scale-Revised, Long version (CPRS-R). Consequently, 90 children were rejected from participating in the study due to the absence of CPRS-R scores. These children were recruited from two centers: Kennedy Krieger Institute (KKI) or New York University (NYU). The children were diagnosed based on evaluations with the Diagnostic Interview for Children and Adolescents, Fourth Edition (DICA-IV Reich, Leacock, & Shanfeld, 1997) or the Schedule of Affective Disorders and Schizophrenia for Children-Present and Lifetime Version (KSADS-PL); CPRS-R or ADHD Rating Scale IV (DuPaul & Power, 1998). They either had a T-score of 65 or greater on at least one ADHD related index of the CPRS-R, or met criteria on the ADHD Rating Scale IV (six out of nine items scored 2 or 3 from Inattention items and/or six out of nine scored 2 or 3 from the hyperactivity/impulsivity items). Consistent with previous studies, children taking stimulant medication were instructed to refrain from taking these medications for at least 24 h before scanning. Additionally, we selected a control group of 170 children matched with our ADHD group (83 girls, 87 boys; 7–17 year old, 11.46 ± 2.76 years, FSIQ > 70). Details of the center distribution of the data included in the study are reported in Table 1.

2.2. Classification

The CPRS-R is a validated and widely used parent questionnaire that assesses hyperactivity–impulsivity and inattention as well as other problem behavior in children and adolescents. We divided our population into three groups defined by the imbalance between their symptoms. We used K-means cluster analysis (Forgy, 1965; Hartigan & Wong, 1979; Lloyd, 1982; MacQueen, 1967; Steinhaus, 1957) on the delta between the hyperactivity–impulsivity and inattention CPRS-R scores to fractionate our sample into three subgroups: predominantly inattentive, predominantly hyperactive and combined. K-means clustering analysis is a commonly used approach to identify relatively homogeneous groups of cases or variables based on selected characteristics (Anwander, Tittgemeyer, von Cramon, Friederici, & Knoesche, 2007; Catani et al., 2007; Johansen-Berg et al., 2004; Mars et al., 2011; Mars et al., 2012). This identified the following: 53 children with a predominantly inattentive CPRS score (32%, 7–17 year old, 11.28 ± 2.75 years, 34 males and 19 females); 44 children (27%, 7–17 year old, 11.36 ± 2.59 years, 34 males and 10 females) with a predominantly hyperactive–impulsive CPRS score and 68 children (41%, 7–16 year old, 10.39 ± 2.24 years, 53 males and 15 females) with a combined symptom profile. Demographical data are reported in Table 2.

2.3. Magnetic resonance imaging data acquisition

During acquisition of the rs-fMRI, participants in both centers (i.e., KKI and NYU) were instructed to relax, think of nothing, and to stay awake. In KKI participants were asked to keep their eyes open, and fixate on a center cross, whereas in NYU participants were instructed to close their eyes. Functional images were obtained using T2-weighted echo-planar imaging (EPI) with BOLD contrast using SENSE imaging. In KKI, EPIs (TR/TE = 2500/30 msec) comprised 47 axial slices acquired continuously in ascending order covering the entire cerebrum (voxel size = 2.67 × 2.67 × 3.00 mm³). In NYU, EPIs (TR/TE = 2000/15 msec) comprised 33 axial slices acquired continuously in interleaved order covering the entire cerebrum (voxel size = 3.0 × 3.0 × 4.0 mm³).

An axial three-dimensional (3D) magnetization prepared rapid gradient echo (MPRAGE) dataset covering the whole head was also acquired for each participant (200 slices, voxel resolution = 1.00 × 1.00 × 1.00 mm, TE = 3.7 msec, TR = 8.0 msec, flip angle = 8° for KKI; 128 slices, voxel resolution = 1.3 × 1.3 × 1.3 mm, TE = 2530 msec, TR = 3.25 msec, flip angle = 7° for NYU).

rs-fMRI independent component analysis (ICA). Analysis of functional connectivity was carried out using Probabilistic

Table 1 – Centers demographics.

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>d</th>
<th>i</th>
<th>Age (y)</th>
<th>VIQ</th>
<th>PIQ</th>
<th>FSIQ</th>
<th>>Inatt</th>
<th>>Hyp/imp</th>
</tr>
</thead>
<tbody>
<tr>
<td>KKI</td>
<td>22</td>
<td>12</td>
<td>10</td>
<td>10.2 ± 1.5</td>
<td>109.3 ± 17.7</td>
<td>109.4 ± 13.8</td>
<td>106.0 ± 14.8</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>KKI</td>
<td>60</td>
<td>33</td>
<td>27</td>
<td>10.2 ± 1.3</td>
<td>114.4 ± 13.3</td>
<td>108.4 ± 11.3</td>
<td>111.5 ± 10.4</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>NYU</td>
<td>143</td>
<td>109</td>
<td>34</td>
<td>11.4 ± 2.6</td>
<td>106.9 ± 13.9</td>
<td>103.0 ± 14.7</td>
<td>105.7 ± 14.2</td>
<td>49</td>
<td>37</td>
</tr>
<tr>
<td>NYU</td>
<td>110</td>
<td>54</td>
<td>56</td>
<td>12.1 ± 3.1</td>
<td>112 ± 13.3</td>
<td>107.5 ± 15</td>
<td>111 ± 10.4</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

KKI, Kennedy Krieger Institute; NYU, New York University; VIQ, verbal intelligence quotient; PIQ, performance intelligence quotient; FSIQ, full scale intelligence quotient; >Inatt, inattentive group; >Hyp/imp, hyperactive/impulsive group.

Please cite this article in press as: Sanefuji, M., et al., Double-dissociation between the mechanism leading to impulsivity and inattention in Attention Deficit Hyperactivity Disorder: A resting-state functional connectivity study, Cortex (2016), http://dx.doi.org/10.1016/j.cortex.2016.06.005
Independent Component Analysis (PICA, Beckmann, 2012; Beckmann & Smith, 2004) as implemented in Multivariate Exploratory Linear Decomposition into Independent Components (MELODIC) version 3.13, part of FMRIB’s Software Library (FSL, www.fmrib.ox.ac.uk/fsl). We chose PICA as it is a robust, operator independent approach (Beckmann, DeLuca, Devlin, & Smith, 2005; Beckmann, Mackay, Filippini, Smith, 2009; Beckmann & Smith, 2004), which provides a very close relationship between the anatomy of the resting networks identified and classical brain functional activations (Smith et al., 2009).

In order to obtain a steady-state signal, the five first volumes of each dataset were discarded from the analyses. rs-fMRI datasets were corrected for head motion by rigid registration to the first volume (Jenkinson, Bannister, Brady, & Smith, 2002), capped with a high pass filter (.01 Hz, Gaussian-weighted least-squares straight line fitting, with sigma = 50.0 sec) and skull-stripped (Smith, 2002). Each subject’s fMRI data was registered to that subject's high-resolution structural image (Jenkinson et al., 2003) and then registered again, this time, with the standard MN152 template using affine (FLIRT) and non-linear registration (FMRIT). All resulting datasets were concatenated in the temporal dimension. This approach is advantageous, as it does not assume that the associated temporal response is consistent across subject but rather looks for common spatial patterns between subjects.

The following data pre-processing was applied to the input data: masking of non-brain voxels; voxel-wise de-meaning of the data; normalisation of the voxel-wise variance; pre-processed data were whitened and projected into a 23-dimensional subspace using probabilistic principal component analysis where the number of dimensions was estimated using the Laplace approximation to the Bayesian evidence of the model order (Beckmann & Smith, 2004; Minka, 2000).

We focused our analyses on three resting state networks of interest, the cortico-striatal network (Alexander et al., 1986; Nieuwenhuys et al., 2008), the dorsal and the ventral attention networks (i.e., dorsal attentional network and ventral attentional network – DAN & VAN, Corbetta & Shulman, 2002; Fox et al., 2006).

2.4. rs-fMRI dual regressions

In order to assess the presence of group differences in the spatial extent of the RSNs, it is necessary to generate subject-level maps of the components extracted by the group-level ICA. This is achieved in two steps: (1) first, the entire set of 23 group-level spatial components (Fig. 1) was regressed against each volume of the preprocessed rs-fMRI data using multiple regression in the spatial domain; therefore, the 3D image associated with each time point in the rs-fMRI data was modeled as a linear combination of the group-level spatial components. This allowed for the estimation of a subject-specific time course for each group-level component. (2) Afterwards, the whole set of 23 component-specific time courses were used as predictors in a second multiple regression in the temporal domain, against the preprocessed rs-fMRI data of each subject. In this way we estimated the correlation of each brain voxel with the characteristic time course of each spatial component, and ultimately obtained maps of the spatial distribution of each subject-specific component. Since this procedure is based on two multiple regression steps, the first in the spatial domain, the second in the temporal domain, it has been denominated ‘dual regression’ (Filippini et al., 2009). A visual description of the steps of the dual regression can be found in (Beckmann et al., 2009). Importantly, since the full set of components extracted by ICA is used, the dual regression procedure accounts for the potential contamination of the rs-fMRI signal by components reflecting structured noise such as motion artifacts and white matter signals. Hence the variance associated with these confounding components was regressed out during the estimation of the rs-fMRI networks summary time course for each subject. For instance, the white matter signal was modeled as the time course of the IC 8, and subsequently, this component had been estimated in a subject-specific way – by means of the first stage of dual regression. This approach has several benefits with respect to using a standard mask of white matter. The white matter mask is directly estimated from the data: remarkably, this component is among the most reproducible found in different ICA-based resting state investigations (e.g., IC4 in Biswal et al., 2010; BM20 in Smith et al., 2009; IC31 in Salimi-Khorshidi et al., 2014). In addition, the dual regression procedure allows for an estimation of the subject-level component of the white matter component extracted in the group analysis.

We then tested for statistical differences between the inattentive group and the hyperactive group using FSL’s
randomise permutation-testing tool. Randomise calculates nonparametric inferences on neuroimaging data. For each voxel of the brain, randomise will test using a permuted general model (Winkler, Ridgway, Webster, Smith, & Nichols, 2014) whether the strength of the functional connectivity in the cortico-striatal, DAN and VAN networks (i.e., the dependant variables) is different between the ‘inattentive’ and the ‘hyperactive/impulsive’ groups (i.e., the independent variables). Results were corrected for multiple comparisons using family-wise error (FWE) (Anderson & Robinson, 2001; Nichols & Holmes, 2002). 3D rendering of the brain was calculated using the T1 pipeline in Brain VISA (http://brainvisa.info).

Note that recent work revealed that motion can have a substantial effect on the estimation of resting-state functional connectivity (Van Dijk, Sabuncu, & Buckner, 2012). Removing time points associated with high motion (‘scrubbing’ Power, Barnes, Snyder, Schlaggar, & Petersen, 2012) represents an effective procedure to reduce the contamination rs-fMRI data by residual motion. However, performing ‘scrubbing’ before temporally-concatenated PICA is not technically feasible and, most importantly, not desirable, as it would lead to heteroscedasticity when performing group-level analysis (i.e., a different number of temporal degrees of freedom for each participant). In addition, a recent work (Jo et al., 2013) revealed that the largest contribution to minimizing head motion was yielded by regressing out from rs-fMRI data the mean signal in a white matter mask.

2.5. Statistical analysis

In our analysis, Gaussian distribution of the data for the three groups was confirmed using the Shapiro–Wilk test (Shapiro & Wilk, 1965).

| Table 3 – Post-hoc statistics (absolute t values,* indicates p < .0042). |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| | Inattentiveness (italic) | Hyperactivity/impulsivity score (bold) | Cortico-striatal connectivity (bold) |
| | Combined | Inattentive | Hyp/imp | Controls | Combined | Inattentive | Hyp/imp | Controls |
| Combined | – | 5.171* | 5.391* | 23.581* | – | 1.657 | 3.075* | 2.096 |
| Inattentive | 3.058* | – | 10.273* | 13.359* | 1.571 | – | 4.789* | t < 1 |
| Hyp/imp | 2.236 | 5.204* | – | 33.615* | 3.969* | 4.888* | – | 5.460* |
| Controls | 25.502* | 29.573* | 20.613* | – | 1.874 | 3.196* | 2.05 | – |

Fig. 1 – 23 rs-fMRI networks extracted by the independent component analysis. Results are displayed in radiological convention (left = right).
Statistical analysis was performed using SPSS 22 software (SPSS, Chicago, IL). Analyses of the differences between the three groups were performed using repeated measure ANOVA for the clinical characteristics. Additionally, repeated measure ANOVA was employed to explore differences in the connectivity strength between the 4 groups in the regions reported as statistically different by the dual regression analysis. Gender, age, centre (KKI or NYU), verbal IQ, performance IQ, full IQ and movement during the rs-fMRI (absolute value) were considered as covariates. Note that there were no significant absolute movement differences between the 4 groups. Post-hoc independent sample t-tests were performed, when statistically appropriate, to compare groups individually. Differences significant at $p < .0042$ survived Bonferroni correction for multiple comparisons (12 post hoc comparisons for the clinical measures and the functional connectivity as reported in Table 3).

3. Results

The striatum represents an important relay station consisting of a group of parallel circuits connecting the cerebral cortex to the thalamus. Anatomically, it is possible to distinguish two main cortico-striatal loops (Alexander et al., 1986; Nieuwenhuys et al., 2008). The direct loop includes, in sequence, excitatory corticostriatal, inhibitory striatopallidal (internal pallidum), inhibitory pallidothalamic and excitatory thalamo-cortical connections. The indirect loop sequentially includes the excitatory cortico-striatal, inhibitory striatopallidal (external pallidum), inhibitory pallido-subthalamic, excitatory subthalamic-pallido-thalamo-cortical and excitatory thalamocortical connections (Fig. 2). The overall function of these loops is to facilitate the initiation and execution of movement (Hauber, 1998), the selection of purposeful patterns of movement in response to internal and environmental stimuli (Pessiglione et al., 2003), and reward and motivation (Pessiglione, Seymour, Flandin, Dolan, & Frith, 2006).

The cortico-striatal network we identified with rs-fMRI (component 5 in Fig. 1) mainly involved the frontal, parietal, posterior temporal and to some extent limbic cortices. Subcortically, it involved significantly the striatum, the internal and external pallidum, and the anterior portion of the thalamus. These results are comparable to those obtained in previously task related fMRI studies (Jahanshahi, Obeso, Rothwell, & Obeso, 2015) and rs-fMRI connectivity studies (Di Martino et al., 2008; Salomons et al., 2014).

The dorsal attentional network (i.e., DAN) increases its activation during the voluntary orienting of attention involving the frontal eye field, the intraparietal sulcus and superior parietal lobe. Alternatively, the ventral attentional network (i.e., VAN) acts as an alarm for the dorsal network, forcing the automatic reorientation of spatial attention when unexpected spatial events occur. The VAN classically involves the caudal portion of the inferior and middle frontal gyri and the supramarginal, angular and caudal portion of the superior temporal gyri (Corbetta & Shulman, 2002; Shulman et al., 2010) (Fig. 3).

The DAN we identified with rs-fMRI (component 9 in Fig. 1) involved mainly the frontal eye field, intraparietal sulcus and the superior parietal lobe. The VAN (component 11 in Fig. 1) involved the temporo-parietal junction (caudal superior temporal gyrus, supramarginal and angular gyri) and the posterior portion of the inferior frontal gyrus. These results are similar to those described as in previously task-related fMRI studies (Corbetta & Shulman, 2002; Shulman et al., 2010) and rs-fMRI connectivity studies (Fox et al., 2006; Hacker et al., 2013; Shulman et al., 2009).

Repeated measures ANOVA revealed a significant interaction between the group and the CPRS scores ($F(3,308) = 206.25$, $p < .001$). Post-hoc independent-sample t-test were summarized in Table 3 and revealed significant differences between the CPRS scores for the three groups (see Fig. 4).

ICA identified the cortico-striatal (Fig. 5a), dorsal and ventral attention resting state networks (Fig. 6a). The three networks showed a high inter-individual reproducibility reaching 100% for the core of each networks and each with a different power spectrum (Figs. 5b and 6b). Dual regression revealed that compared to the ‘inattentive’ group, the
‘hyperactive’ group had stronger connectivity within the cortico-striatal network at the level of the right striatum (MNI coordinates 10, 18, 0; volume 896 mm3; peak $p = .038$; situated in the head of the caudate nucleus as shown in Fig. 5c). This analysis also revealed that, compared to the ‘hyperactive’ group, the ‘inattentive’ group had stronger connectivity within the VAN in the core of its parietal (MNI coordinates 62, −30, 40; volume 256 mm3; peak $p = .05$; Fig. 6c) and frontal components (MNI coordinates 58, 14, 8; volume 384 mm3; peak $p = .05$; Fig. 6c). The connectivity in the DAN, however, did not differ significantly between the ‘inattentive’ group, the ‘hyperactive’ group.

Repealed measures ANOVA revealed a significant interaction between the group membership and the strength of the connectivity in the areas reported by dual regression analysis as statistically different $F(3,308) = 14.059, p < .001$. Post-hoc independent-sample t-test revealed significant differences between the strength of the connectivity for the three groups (see Figs. 5d, 6d and Table 2). Additional analyses of the same regions mirrored in the left hemisphere were not significant $F(3,308) = 1.037, p = .357$.

4. Discussion

Our rs-fMRI study revealed, for the first time, a double dissociation between functional brain networks modulating hyperactivity/impulsivity and inattention in children with ADHD. In children with a predominantly hyperactive–impulsive subtype, we report increased connectivity in the right cortico-striatal network; whereas in those with a predominantly inattentive subtype, we found increased connectivity in the right ventral attention network. Additional analyses did not reveal significant differences in the same regions mirrored in the left hemisphere, further suggesting a right lateralised disturbance of these networks. These findings are consistent with our current understanding of the role of these networks and lateralization of specific cognitive function.

Previous neuropsychological, task-fMRI and anatomical studies have, for example, reported that attention is dominant in the right hemisphere (Mesulam, 1999; Shulman et al., 2010; Sperry, 1974; Thiebaut de Schotten et al., 2011). Also, the right hemispheric hypoarousal theory of ADHD has long suggested that inattention and impulsivity associated with ADHD is due to a lateralised disturbance in frontal lobe network function, mediated by the dysfunction of predominantly right hemispheric frontostriatal (Sheppard, Bradshaw, Mattingley, & Lee, 1999) and frontoparietal tracts (Carter, Krener, Chaderjian, Northcutt, & Wolfe, 1995). However, most prior studies lacked the statistical power to fractionate the ADHD phenotype further, and analyse the relationship between core symptoms of ADHD and these specific brain networks.

The specificity of our findings is consistent with earlier studies, which have reported that the cortico-striatal system (predominantly modulated by dopamine) is central to hyperactivity and impulse control. For example, in animal studies, mice with neonatal dopamine-depleting lesions demonstrate hyperactivity that is reduced by psychostimulants (Avale et al., 2004) and infusions of a D1 antagonist into the prefrontal cortex of monkeys increase impulsivity (Ma, Arnsten, Li, 2005; Ma, Qi, Peng, & Li, 2003). In children, psychostimulants have been reported to be associated with reduced inferior frontal lobe activation during inhibition related tasks (Pauls et al., 2012). Further, in children with ADHD, increased impulsivity has been reported to be associated with atypical fronto-striatal function (Durston et al., 2003), task related reduced activations (Cubillo et al., 2010), decreased entropy (Sokunbi et al., 2013), and increased rs-fMRI connectivity (Costa Dias et al., 2013). Therefore the increased connectivity reported in our study may contribute to the overall lack of response control (i.e., hyperactivity and impulsivity) found in ADHD patients. In contrast with our results, fronto-striatal functional connectivity has been reported to be reduced in ADHD during task-related fMRI but is ‘normalized’ with the use of stimulant (Rubia et al., 2009). Methodological differences between the current approach.

\[F(3,308) = 14.059, p < .001 \]
\[T_{(3,308)} = 1.037, p = .357 \]
and previous studies may explain this discrepancy; alternatively aberrant connectivity may behave differently during rest or task-related fMRI.

Conversely the VAN, predominantly modulated by noradrenaline, has been more closely linked with attention and the control of switching attention from one source to another (Aston-Jones, Foote, & Bloom, 1984; Bouret & Sara, 2005; Corbetta & Shulman, 2002). Studies in monkeys, for example, have reported noradrenergic innervation of the temporo-parietal junction and the frontal lobe by the locus coeruleus/noradrenergic system (Foote & Morrison, 1987; Morrison & Foote, 1986). Functionally, this serves to reorient an individual to salient or behaviourally relevant visual, auditory or tactile stimuli (Downar, Crawley, Mikulis, & Davis, 2000). Also, the modulation of inferior frontal gyrus activation with stimulant during presentation of irrelevant distractors covaries with activation within the ventral fronto-parietal network (Pauls et al., 2012). Therefore the increased connectivity reported in our study may contribute to the excessive reorientation to irrelevant distractors (i.e., distractibility or inattention) found in ADHD patients (for a review on the noradrenergic system and the ventral attention system see Corbetta, Patel, & Shulman, 2008). Further, during spatial tasks fronto-parietal functional connectivity has been reported to be reduced in subjects with ADHD (Vloet et al., 2010) again suggesting that aberrant functional connectivity may be different at rest and during a task.

Increased aberrant connectivity within the cortico-striatal and VAN might be related to a delayed synaptic pruning that occurs during brain maturation (Low & Cheng, 2006). Preliminary reports show that ADHD children are on a different trajectory of brain maturation (Shaw et al., 2012) that may also have impacted the functional connectivity within the cortico-striatal and ventral fronto-parietal networks. Alternatively, increased functional connectivity may also be related to compensatory mechanisms (for a similar interpretation in posterior cerebral atrophy see Migliaccio et al., 2016).

Although the current study has a number of strengths it also had some limitations. First, in order to increase statistical power, we combined datasets from two different institutes. This approach produced some inhomogeneity in the dataset (e.g., spatial and temporal resolution of rs-fMRI and structural MRI, eyes opened/closed during resting state…). However, it is unlikely that this has had a significant effect on our results as the networks identified by rs-fMRI are extraordinarily robust across distinct populations and differences in scanner field strength, scanning parameters (Biswal et al., 2010), or condition of rest (eyes opened or closed Patriat et al., 2013) and are stable in test-retest designs (Shehzad et al., 2009; Van Dijk et al., 2010). Further the children in the two centres were matched for age, sex and clinical characteristics. A second limitation was the absence of information regarding co-morbid diagnoses (e.g.,

Please cite this article in press as: Sanefuji, M., et al., Double-dissociation between the mechanism leading to impulsivity and inattention in Attention Deficit Hyperactivity Disorder: A resting-state functional connectivity study, Cortex (2016), http://dx.doi.org/10.1016/j.cortex.2016.06.005
conduct disorders) and medication status (e.g., medication naïve/not naïve) for many subjects. This effect has been minimized as stimulant drugs were withdrawn at least 24 h before scanning. However, these factors may still have confounded our findings if they were not randomly distributed between the two groups (An, Cao, Cao, et al., 2013; Shafritz, Marchione, Gore, Shaywitz, & Shaywitz, 2004; Zhu et al., 2013). Future studies would benefit from clearer measures of these factors. A third limitation is the hypothetically driven aspect of our study, which purposely focused on the cortico-striatal and attentional networks in order to reduce the number of comparisons. Other studies report strong functional connectivity differences, between ADHD and controls, in the default network, particularly in the anterior cingulate cortex (Castellanos et al., 2008; Fair et al., 2010; Tian et al., 2006; Wolf et al., 2009) and cortico-cerebellar network (Cao et al., 2006; Rubia et al., 2009; Tian et al., 2006; Wolf et al., 2009; Zang et al., 2007). Future research may need to explore further these networks with PICA or other approaches such as fractal analysis, entropy and complexity measurements and frequency analysis techniques, which recently provided interesting brain behavior correlations in ADHD (An, Cao, Sui, et al., 2013; Zang et al., 2007; Sokunbi et al., 2013). Finally, it is important to note that our group division suggests that a continuum exists between the different symptoms dimension in ADHD. It is important to note that we use a statistical clustering (k-mean clustering) based on CPRS-R scores rather than the original subtypes classified in the ADHD-200 sample in order to reduce variability in the subtype diagnosis. Our purpose was not to provide a new classification of ADHD but rather to identify the biological mechanisms that lead to profiles that are more hyperactive than inattentive or more inattentive than hyperactive.

In summary our study demonstrated for the first time a right lateralized, double dissociation between specific
networks associated with hyperactivity–impulsivity and inattentiveness in children with ADHD. The measure of increased functional connectivity in the cortico-striatal or ventral fronto-parietal networks may assist further studies to fractionate the ADHD phenotype into more homogenous biological subtypes.

Acknowledgements

We would like to thank the NATBRAINLAB (http://www.natbrainlab.com) and Huai-Hsuan Tseng for helpful discussion. This work was supported by The Japan Foundation for Pediatric Research, Shire (project IST-ALB-000217), and the Agence Nationale de la Recherche (project PHENOTYPES, no. ANR-13-JSV4-0001-01). This paper represents independent research part funded by the National Institute for Health Research (NIHR) Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King’s College London. Additionally, the research leading to these results has received support from the Innovative Medicines Initiative Joint Undertaking under grant agreement n° 115300, resources of which are composed of financial contribution from the European Union’s Seventh Framework Programme (FP7/2007 – 2013) and EFPIA companies’ in kind contribution.

Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.cortex.2016.06.005.

Fig. 6 – Dorsal (DAN) and ventral (VAN) attention networks. (a) Group effect of the DAN (blue to light blue) and VAN networks (red to yellow) as defined by ICA. (b) Power spectrum of the DAN (blue) and the VAN (orange) according to time frequencies. (c) The VAN shows an increased functional connectivity in the group ‘inattentive’ when compared to the group ‘hyperactive/impulsive’. (d) Average functional connectivity in the clusters reported as significant in the VAN. Error bars indicate 95% confidence intervals. *p < .0042. IPs, intraparietal sulcus; SPL, superior parietal lobule, FEF, frontal eye field, TPJ, temporoparietal junction, IPL, inferior parietal lobule, STg, superior temporal gyrus, VFC, ventral frontal cortex, IFg, inferior frontal gyrus, MFG, middle frontal gyrus.

Please cite this article in press as: Sanefuji, M., et al., Double-dissociation between the mechanism leading to impulsivity and inattention in Attention Deficit Hyperactivity Disorder: A resting-state functional connectivity study, Cortex (2016), http://dx.doi.org/10.1016/j.cortex.2016.06.005

REFERENCES

Durston, S., Tottenham, N. T., Thomas, K. M., Davidson, M. C., Eigsti, I. M., Yang, Y., et al. (2003). Differential patterns of...
strial activation in young children with and without ADHD. Biological Psychiatry, 53, 871–878.
Patriat, R., Molloy, E. K., Meier, T. B., Kirk, G. R., Nair, V. A., Meyerand, M. E., et al. (2013). The effect of resting condition on...

